6 research outputs found

    The impact of reactive case detection on malaria transmission in Zanzibar in the presence of human mobility

    Get PDF
    Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence, reactive case detection, and travel history. We find that in the absence of imported cases from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios that may lead to elimination, especially through changes to reactive case detection. While we find that some additional cases are removed by reactive case detection, a large proportion of cases are missed due to many infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on prevalence

    Modelling the impact of interventions on imported, introduced and indigenous malaria infections in Zanzibar, Tanzania

    Get PDF
    Malaria cases can be classified as imported, introduced or indigenous cases. The World Health Organization's definition of malaria elimination requires an area to demonstrate that no new indigenous cases have occurred in the last three years. Here, we present a stochastic metapopulation model of malaria transmission that distinguishes between imported, introduced and indigenous cases, and can be used to test the impact of new interventions in a setting with low transmission and ongoing case importation. We use human movement and malaria prevalence data from Zanzibar, Tanzania, to parameterise the model. We test increasing the coverage of interventions such as reactive case detection; implementing new interventions including reactive drug administration and treatment of infected travellers; and consider the potential impact of a reduction in transmission on Zanzibar and mainland Tanzania. We find that the majority of new cases on both major islands of Zanzibar are indigenous cases, despite high case importation rates. Combinations of interventions that increase the number of infections treated through reactive case detection or reactive drug administration can lead to substantial decreases in malaria incidence, but for elimination within the next 40 years, transmission reduction in both Zanzibar and mainland Tanzania is necessary

    Risk of imported malaria infections in Zanzibar: a cross-sectional study

    Get PDF
    BACKGROUND: Zanzibar has made substantial progress in malaria control with vector control, improved diagnosis, and artemisinin-based combination therapy. Parasite prevalence in the population has remained around 1% but imported infections from mainland Tanzania contribute to sustained local transmission. Understanding travel patterns between mainland Tanzania and Zanzibar, and the risk of malaria infection, may help to control malaria importation to Zanzibar. METHODS: A rolling cross-sectional survey linked to routine reactive case detection of malaria was carried out in Zanzibar between May 2017 and October 2018. Households of patients diagnosed with malaria at health facilities were surveyed and household members were tested for malaria using rapid diagnostic tests and a sub-sample by quantitative PCR (qPCR). Interviews elicited a detailed travel history of all household members who had travelled within the past two months, including trips within and outside of Zanzibar. We estimated the association of malaria infection with travel destinations in pre-defined malaria endemicity categories, trip duration, and other co-variates using logistic regression. RESULTS: Of 17,891 survey participants, 1177 (7%) reported a recent trip, of which 769 (65%) visited mainland Tanzania. Among travellers to mainland Tanzania with travel destination details and a qPCR result available, 241/378 (64%) reported traveling to districts with a 'high' malaria endemicity and for 12% the highest endemicity category was 'moderate'. Travelers to the mainland were more likely to be infected with malaria parasites (29%, 108/378) than those traveling within Zanzibar (8%, 16/206) or to other countries (6%, 2/17). Among travellers to mainland Tanzania, those visiting highly endemic districts had a higher odds of being qPCR-positive than those who travelled only to districts where malaria-endemicity was classified as low or very low (adjusted odd ratio = 7.0, 95% confidence interval: 1.9-25.5). Among travellers to the mainland, 110/378 (29%) never or only sometimes used a mosquito net during their travel. CONCLUSIONS: Strategies to reduce malaria importation to Zanzibar may benefit from identifying population groups traveling to highly endemic areas in mainland Tanzania. Targeted interventions to prevent and clear infections in these groups may be more feasible than attempting to screen and treat all travellers upon arrival in Zanzibar

    Malaria elimination in Zanzibar: where next?

    Get PDF
    In 2018, Zanzibar developed a national malaria strategic plan IV (2018-2023) to guide elimination of malaria by 2023. We assessed progress in the implementation of malaria activities as part of the end-term review of the strategic plan. The review was done between August and October 2022 following the WHO guideline to assess progress made towards malaria elimination, effectiveness of the health systems in delivering malaria case management; and malaria financing. A desk review examined available malaria data, annual work plans and implementation reports for evidence of implemented malaria activities. This was complemented by field visits to selected health facilities and communities by external experts, and interviews with health management teams and inhabitants to authenticate desk review findings. A steady increase in the annual parasite incidence (API) was observed in Zanzibar, from 2.7 (2017) to 3.6 (2021) cases per 1,000 population with marked heterogeneity between areas. However, about 68% of the detected malaria cases were imported into Zanzibar. Malaria case follow-up and investigation increased from <70% in 2017 to 94% and 96% respectively, in 2021. The review noted a 3.7-fold increase of the health allocation in the country's budget, from 31.7 million USD (2017/18) to 117.3 million USD (2022/23) but malaria allocation remained low (<1%). The varying transmission levels in the islands suggest a need for strategic re-orientation of the elimination attempts from a national-wide to a sub-national agenda. We recommend increasing malaria allocation from the health budget to ensure sustainability of malaria elimination interventions

    From high to low malaria transmission in Zanzibar-challenges and opportunities to achieve elimination.

    Get PDF
    BACKGROUND: Substantial global progress in the control of malaria in recent years has led to increased commitment to its potential elimination. Whether this is possible in high transmission areas of sub-Saharan Africa remains unclear. Zanzibar represents a unique case study of such attempt, where modern tools and strategies for malaria treatment and vector control have been deployed since 2003. METHODS: We have studied temporal trends of comprehensive malariometric indices in two districts with over 100,000 inhabitants each. The analyses included triangulation of data from annual community-based cross-sectional surveys, health management information systems, vital registry and entomological sentinel surveys. RESULTS: The interventions, with sustained high-community uptake, were temporally associated with a major malaria decline, most pronounced between 2004 and 2007 and followed by a sustained state of low transmission. In 2015, the Plasmodium falciparum community prevalence of 0.43% (95% CI 0.23-0.73) by microscopy or rapid diagnostic test represented 96% reduction compared with that in 2003. The P. falciparum and P. malariae prevalence by PCR was 1.8% (95% CI 1.3-2.3), and the annual P. falciparum incidence was estimated to 8 infections including 2.8 clinical episodes per 1000 inhabitants. The total parasite load decreased over 1000-fold (99.9%) between 2003 and 2015. The incidence of symptomatic malaria at health facilities decreased by 94% with a trend towards relatively higher incidence in age groups > 5 years, a more pronounced seasonality and with reported travel history to/from Tanzania mainland as a higher risk factor. All-cause mortality among children < 5 years decreased by 72% between 2002 and 2007 mainly following the introduction of artemisinin-based combination therapies whereas the main reduction in malaria incidence followed upon the vector control interventions from 2006. Human biting rates decreased by 98% with a major shift towards outdoor biting by Anopheles arabiensis. CONCLUSIONS: Zanzibar provides new evidence of the feasibility of reaching uniquely significant and sustainable malaria reduction (pre-elimination) in a previously high endemic region in sub-Saharan Africa. The data highlight constraints of optimistic prognostic modelling studies. New challenges, mainly with outdoor transmission, a large asymptomatic parasite reservoir and imported infections, require novel tools and reoriented strategies to prevent a rebound effect and achieve elimination

    Reductions in malaria and anaemia case and death burden at hospitals following scale-up of malaria control in Zanzibar, 1999-2008

    Get PDF
    Background: In Zanzibar, the Ministry of Health and partners accelerated malaria control from September 2003 onwards. The impact of the scale-up of insecticide-treated nets (ITN), indoor-residual spraying (IRS) and artemisinin-combination therapy (ACT) combined on malaria burden was assessed at six out of seven in-patient health facilities. Methods. Numbers of outpatient and inpatient cases and deaths were compared between 2008 and the pre-intervention period 1999-2003. Reductions were estimated by segmented log-linear regression, adjusting the effect size for time trends during the pre-intervention period. Results: In 2008, for all age groups combined, malaria deaths had fallen by an estimated 90% (95% confidence interval 55-98%)(p < 0.025), malaria in-patient cases by 78% (48-90%), and parasitologically- confirmed malaria out-patient cases by 99.5% (92-99.9%). Anaemia in-patient cases decreased by 87% (57-96%); anaemia deaths and out-patient cases declined without reaching statistical significance due to small numbers. Reductions were similar for children under-five and older ages. Among under-fives, the proportion of all-cause deaths due to malaria fell from 46% in 1999-2003 to 12% in 2008 (p < 0.01) and that for anaemia from 26% to 4% (p < 0.01). Cases and deaths due to other causes fluctuated or increased over 1999-2008, without consistent difference in the trend before and after 2003. Conclusions: Scaling-up effective malaria interventions reduced malaria-related burden at health facilities by over 75% within 5 years. In high-malaria settings, intensified malaria control can substantially contribute to reaching the Millennium Development Goal 4 target of reducing under-five mortality by two-thirds between 1990 and 2015
    corecore